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A generalized formulation of inviscid incompressible hydrodynamics 
as a system of conservation laws subject to a one-sided density 
constraint is used as the basis of a numerical algorithm for a variety 
of hydrodynamic free surface problems. Benchmark calculations for 
colliding masses of fluid and for the motion of a spherically symmetric 
bubble are compared with theoretical predictions. Also shown are 
profiles calculated for an evolving underwater bubble near a wall. 
Energy dissipation is introduced as a measure of turbulence and is used 
in analyzing the numerical results. Convergence behavior of the 
numerical algorithm is discussed. 0 1993 Academic Press, Inc. 

1. INTRODUCTION 

The most familiar phenomenon associated with the 
motion of water with a free surface is probably the forma- 
tion of waves. Almost as familiar is the breaking of waves. 
This latter phenomenon reflects a breakdown of the classi- 
cal hydrodynamic theory, which presumes a one-to-one 
mapping of initial particle positions to their locations at a 
later time. We may generically ascribe the cause of such 
types of breakdown to “Helmholtz instability,” which we 
equate with a loss of Lipschitz continuity (with respect to 
space) of the velocity field, since particle paths will never 
run together when the velocity held is Lipschitz continuous. 
Local existence in time of smooth solutions of hydro- 
dynamic free boundary problems can be shown in 
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special cases [ 11, but in general such existence is not to be 
expected. It is shown in [2] that, in the case of inviscid 
incompressible flows in the absence of surface tension, if a 
wave on any scale breaks at any time, then waves on smaller 
scales can break in arbitrarily short times. This calls into 
question the utility of the classical formulation of free- 
surface hydrodynamics for the treatment of any but a few 
special types of flows. 

For this reason, a generalized formulation of inviscid 
incompressible hydrodynamics has been developed [2, 31, 
which reverts to the classical theory for smooth flows 
(the regime in which the classical theory applies). This 
generalized formulation is natural for the treatment of flows 
with complicated free boundaries, as it is topology-inde- 
pendent, in the sense that explicit tracking of the position of 
the fluid surface is not required by the solution algorithm. 
The salient feature of the generalized hydrodynamics is that 
the equations of motion are given in “conservation” form in 
a fixed domain, which may be 9P and that they are solved 
subject to a one-sided constraint on the mass density. The 
generalized treatment admits the possibility of flows in 
which there is a “spray” region, where the mass density is 
below that of the fluid, and also the possibility of energy loss 
in the flow due to collisions of fluid particles. This 
generalized formulation is reviewed in Section 2. 

The purpose of the present paper is to give an eflicient 
numerical method based on the generalized inviscid 
hydrodynamics of Refs. [2, 31. A preliminary version of the 
current paper appeared in [4]. Since the present numerical 
method retains the features of the generalized formulation, 
it is well suited for treating problems where complex free 
surfaces are present and where collisions of fluid elements 
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occur. As previously indicated, such difficulties often arise in 
the long time motion of incompressible, inviscid free surface 
problems. 

Existing numerical methods using integral representa- 
tions for potential flow (boundary integral or panel 
methods) have been successfully applied to classical 
problems (see, e.g., [S-S]). These methods require the 
explicit calculation of the location of the free surfaces, and 
they break down when collisions of fluid elements occur (as 
in the case of breaking surface waves). There has been recent 
progress in extending these procedures to treat the special 
case of an underwater bubble undergoing a change in 
topology from a sphere to a torus. This has been done in 
[7] by introducing and explicitly tracking a branch cut in 
the flow field and in [S] by adding a circulation to the flow 
field which balances the jump in potential across the cut. 
However, these procedures are still being validated and, 
as yet, have no straightforward extensions to either 
more general collisions (e.g., breaking waves) or three- 
dimensional problems. 

Finite difference methods based on the incompressible 
equations have also been developed for free surface 
problems. The more robust of the existing methods use 
either a marker and cell (MAC) procedure (see, e.g., [9]) or 
a volume of fluid (VOF) variable (see, e.g., [lo]) to follow 
the evolution of the incompressible fluid regions and 
delineate their free surface boundaries in a fixed computa- 
tional mesh. In the MAC procedure, massless marker 
particles are dispersed in the fluid region and convected by 
the flow in a Lagrangian manner. Disadvantages of this 
approach include the additional storage required for 
locating the marker particles, and the additional logic 
required to locate the cells containing the free surfaces. In 
methods using a VOF variable, an auxiliary scalar field 
representing the volume of incompressible fluid per unit 
volume, is introduced and advanced in time using an equa- 
tion expressing the conservation of incompressible fluid 
volume. The free surfaces are located at the discontinuities 
of the VOF variable. When collisions of fluid elements 
occur, these methods apparently rely on the physically 
unrealistic dissipation inherent in their differencing schemes 
to handle the resulting loss of flow smoothness. For 
example, whenever the VOF variable attains a value greater 
than one, the excess is simply ignored. While this approach 
may be adequate when the excesses are due to numerical 
truncation error, large errors may arise when fluid collisions 
occur. 

In the present fixed domain method, the constrained mass 
density serves as a VOF variable. However, unlike the VOF 
approach, global conservation of mass and momentum is 
imposed. In the present method, the free surfaces appear 
naturally as slightly “smeared” interfaces which, in some 
respects, resembles the way shock waves are “captured” by 
many Eulerian, compressible flow codes. Another impor- 

tant feature of the present method is the physical model 
employed for the redistribution of mass and momentum 
resulting from collisions of fluid elements. Among other 
things, this treatment ensures that the global energy behaves 
in a manner similar to the global Lax entropy in com- 
pressible gas dynamics in that it cannot increase, and it may 
decrease, depending on the dynamics of the flow. Energy 
conservation occurs only in the special case of classical 
flows, where no collisions of fluid elements can take place. 

Compressible flow codes have also been applied to free 
surface problems for “nearly” incompressible fluids; see, e.g., 
[ 11, 123. These methods, however, are not particularly well 
suited for treating the long time motion of nearly incom- 
pressible fluids like water. In addition to the difficulties of 
specifying an appropriate equation of state for the nearly 
incompressible fluid, these methods require very small time 
steps for stability due to the very large acoustical speed in 
the fluid. The small time steps of the compressible codes 
near the incompressible limit restrict their usefulness for 
predicting the relatively long time motions of essentially 
incompressible fluids addressed by the present method. 

The numerical algorithm is described here in the context 
of axially symmetric problems (see Section 3). As will be 
apparent from Section 3, that there is no conceptual change 
in extending the algorithm to three space dimensions, 
beyond the obvious larger scale of carrying out various 
numerical procedures in a region in B3 instead of g’+ x W. 
To test the applicability of the method, two benchmark 
problems are considered (see Section 4). One is the model 
problem of the face-on collision of two cylindrical masses of 
liquid. The computed energy loss in this collision problem is 
seen to compare favorably with the analytical expression for 
the energy loss. The other is the periodic motion of a spheri- 
cally symmetric underwater bubble in an “infinite” medium, 
for which there is a known analytical solution, see, e.g., 
[13]. In addition, computational results will be given for 
the motion of an underwater bubble near a solid bottom 
wall. In the latter problem, the collapse of an initially spheri- 
cal bubble forms a reentrant water jet passing through the 
bubble’s interior from top to bottom and impacting on the 
opposite side. After the jet breaks through the opposite 
side, the bubble becomes toroidal in shape. This agrees 
qualitatively with experimental observations. 

2. GENERALIZED HYDRODYNAMICS 

Here we shall summarize the equations that govern the 
evolution of the flow, with our primary aim being a concise 
description of the basis of the procedure used to obtain the 
numerical results described in Section 4. Consider a spatial 
domain, Q, fixed for all time, which contains an incom- 
pressible fluid with mass density pO. In this fixed domain, 
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the mass and momentum densities (p and pu, respectively) where u2 = u . u and z is the coordinate in the direction of k, 
are governed by conservation laws subject to the constraint satisfies 

PGPO. 

The time varying liquid region is defined by 

(2.1) e(fi, ii) - e(pn, u”) = -z@, with @, >/O (2.4) 

9(t) = {x EQR:P(X, t) = PO} 

and is determined by the solution. For reasons which will be 
apparent later in this description, the pressure P will be 
regarded as a dependent variable only in 9(t). In any 
connected non-liquid portion of 52, where p < po, the 
pressure is assumed to be constant (in space). Since surface 
tension effects will be neglected, we also assume that P is 
continuous. 

when the fluxes across the boundaries of 52 are neglected. 
Further, if no collisions take place during the time step then 
@I =o. 

Our procedure will carry us from a known description of 
the flow at a given time t = t” to a description of the flow at 
a later time t” + r. The positive quantity z is the time step 
and we may regard our treatment formally as generating 
an approximate flow which is meant to converge to an 
exact flow as r + 0, in a nonlinear semigroup sense. The 
governing equations and the constraint are treated using a 
time split approach which approximates their solution at 
the new time step in distinct stages. 

For numerical efficiency, the “inelastic solution” of (2.2) 
(2.3) is approximated in the present work using an explicit 
finite difference scheme rather than a Boltzmann approach. 
This difference scheme is based on the integral form of (2.2), 
(2.3) on a computational cell with the time averaged 
convective fluxes across the cell faces chosen to model the 
inelastic solution. Details of this scheme, along with the 
associated explicit stability condition on r, will be described 
in Section 3. 

In the first stage of the algorithm, the advection of the 
flow under the influence of gravity is considered without 
regard to the constraint (2.1). The equations governing this 
stage are given by 

In the remaining stages of the algorithm, the provisional 
values of mass and momentum densities, fi and p’fi, are 
corrected so that the constraint (2.1) is satisfied. One may 
imagine that, while the flow is convecting according to (2.2) 
and (2.3), an extremely rapid diffusion of excess mass is 
taking place wherever (2.1) is violated. The motion 
associated with this diffusion of mass also has to affect the 
momentum. The rapid diffusion of excess mass is governed 
by the equation 

pt +v . (PU) = 0, (2.2) 

(PU),+~.(PUU)= -a+, (2.3) 

where g is the gravitational constant and -k is the unit 
vector in the direction of the gravitational force. The initial 
values for the above are the known values p” and u” of the 
density and velocity at t = t”. The solutions of (2.2), (2.3) at 
t = t” + r will be denoted by p”, G. 

where A=V.V, 

et* = Af(Q, (2.5a) 

(2.5b) 

t* = at, a is the diffusion coefficient, and 8 is an instan- 
taneous mass density satisfying the initial condition 

Solutions of (2.2) and (2.3) may generally be multiple- 
valued when fluid particles which have come from different 
locations arrive at the same point and thus collide. Weak 
solutions which are single-valued in their dependence on the 
Eulerian coordinates can be constructed in a multitude of 
ways, and in order to prescribe a particular single-valued 
solution we have to insert a selection rule from physics, in 
addition to the requirement that mass and momenta be 
conserved in collisions. In the present version of generalized 
hydrodynamics, we do so by requiring that all collisions of 
fluid particles be inelastic. Such inelastic solutions can be 
represented using a Boltzmann-type approach (see [2]). 
A consequence of this representation is that the energy, 
defined by 

e(0) = p. (2.5~) 

We are interested in (2.5) when a + co. Hence, after a time 
z, t* = ar + co, and we have the corrected mass density 

p= lim e(t*). 
I* + co (2.6) 

The problem (2.5) is a one-phase Stefan problem and it 
follows that p given by (2.6) satisfies the constraint (2.1). 
The associated modified momentum density oii is given by 
(cf. PI) 

e(p,u)=j (fpu2+w)dx, 
R 

(2.7a) 
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where and then obtain u* from 

H= mj-(O(t*)) dt*. 
5 0 

(2.7b) 

Instead of solving the Stefan problem (2.5) to steady state, 
H and p can be found more efficiently [ 141 by solving the 
“obstacle” problem: find H 2 0 such that 

if H>O, 
if H=O. (2.8) 

Then p is simply p. in the support of H and p elsewhere. - - It has been shown in [2] that p, u represent a consistent 
approximation to the solution of classical free surface 
problems, where the velocity field is smoothly differentiable 
in the incompressible liquid region and the pressure is zero 
in the non-liquid region. For such classical problems, it 
follows from (2.7a) and (2.3) that 2H/z2 takes the part of the 
pressure in more usual formulations of hydrodynamics and 
thus H is 0(r2). Unfortunately, the use of (2.7a) may, in 
certain circumstances, lead to spurious energy sources in the 
approximate solution. This difficulty can be eliminated by 
refining the treatment of the density constraint (2.1) as 
indicated in [3]. The method of [3] has the additional 
advantage that it is directly applicable to problems where 
non-zero pressures are specified in the non-liquid regions. 

Following [3], the constraint (2.1) is required to be 
satisfied, not only at the particular discrete time steps, but 
also in a “strip” [ 151 at each of these times, in the sense that 

when p=po, (2.9) 

at each of the discrete times. In view of (2.2), (2.9) becomes 

v.u>o when p=po. (2.10) 

Both (2.1) and (2.10) are imposed at each time step. The 
constraint (2.10) is satisfied using a Lagrange multiplier P 
(the pressure) whose gradient appears in the momentum 
equation. This procedure is similar to that commonly used 
in incompressible hydrodynamics. In the present context, 
however, the momentum equations are considered on the 
entire fixed domain while the constraint (2.10) is active (and 
thus the pressure is a dependent variable) only in the liquid 
sub-region where p = po. In the algorithm, H and p (the 
final density for the new time step) are still determined using 
(2.8). The final velocity at the new time step, u*, is obtained 
by dividing (2.7a) into two stages. Accordingly, we first 
define I using 

j?U = ,% + A&H), (2.11) 

where /j = po, 
elsewhere. (2.12) 

The pressure P is determined in the liquid domain 
9 = {x :p = po}, subject to the constraint P 2 P,, where P, 
is the cavitation pressure of the liquid. This leads to the 
obstacle problem on 9: find P 2 P, such that 

if P>P,, 
if P=P,. 

(2.13) 

Recall that in the non-liquid portions of the fixed domain, 
where p < po, P is specified. In the subset g* c 9, where 
p = p. and P > P,, (2.12) is a decomposition of the vector 
ii into a divergence-free component, u*, and an irrotational 
component, V( Pz)/po. Thus $@* represents the incom- 
pressible liquid region. In the regions where p = p. and 
P = P,, V . u* = V . ii 2 0 and it follows that the density is 
non-increasing with time. Hence there is the possibility of 
cavitation of the liquid as indicated by the appearance of 
non-liquid regions, where P = P, in the solution. 

In summary, the algorithm for the full time step is given 
by the three-stage procedure 

Formally, we can analyze the change in energy associated 
with one full step of the algorithm. We note from (2.11) and 
(2.8) that 

pgz - bgz = A( gzH) - 2V. (gHk). 

Thus, neglecting fluxes across the boundaries of 52, one has 

e(p,ii)-e(p”,fi)= -I (i@-ti)2/2+H(Vti)2) 
62 

E-70,. (2.14) 

Further, if g* has a piecewise regular boundary, we have 
from (2.12) that 

e(p, u*) - e(& ii) + z ja9* (u* .n)P 

T2 = -- 2 f 9* (VP)‘Ip= -m, (2.15) 
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where Z@* is the boundary of Q* and n is its unit outer nor- 
mal. The last term on the left-hand side of (2.15) represents 
the work done by the boundaries of the incompressible 
liquid during the time step. It follows from (2.4), (2.14), and 
(2.15) that 

et& u*) - e(pn, u”) + z fa9, (u* .n)P = -t@, (2.16) 

where 0 = @i + a2 + di, 2 0. Thus, neglecting fluxes across 
88, the sum of the energy and the boundary work cannot 
increase (and may decrease) regardless of the size of the time 
step r. For classical flows, the regularity of the velocity field 
does not allow collisions of the fluid elements and the dis- 
sipation @ will vanish as t + 0. (For such flows the conser- 
vation of energy (i.e., (2.16) with @ = 0) is a consequence 
of the conservation of mass and momentum.) For the 
generalized flows considered here, the velocity fields may 
not have the required regularity and inelastic collisions of 
the fluid elements can take place with an associated loss of 
energy. In such non-classical problems, the portion of the 
energy dissipation which does not vanish as z -+ 0 is an 
intrinsic property of the flow and may be attributed to 
turbulence. For a discussion of the connection between 
stability, turbulence, and energy dissipation in the 
generalized hydrodynamics, the reader is referred to [ 161. 

Underwater bubbles. To illustrate the application of the 
above algorithm, we consider the evolution of an under- 
water bubble. In this problem, the bubble is modeled as a 
uniform pressure region g with pressure P, given by the 
adiabatic gas law: 

P, V; = const, (2.17) 

where y is the ratio of the specific heats and V, is the volume 
of the bubble. Above the water there is the atmospheric 
region d which has a constant pressure P,. If the obstacle 
in (2.13) is active such that V . u > 0 in some region for a 
finite length of time, then a third non-water region (jj < pO) 
will evolve. This region will be referred to as the cavitation 
region V and will have constant pressure PC. In the absence 
of viscosity and surface tension the cavitation pressure is the 
saturation vapor pressure of the liquid. We are assuming 
P, > P, and P, > P,. The regions d, L@‘, and G?Z can vary 
with time, depending on the density field. Since the density 
at the new time is determined in the second stage of the 
algorithm, these regions are updated before performing the 
final stage of the algorithm. A procedure for determining 
these regions for the fully discretized problem is given in the 
next section. 

For the last stage of the algorithm, the pressure in the 
non-water regions (where p < p,,) is given by 

if XE&, 
if XEL%, (2.18) 
if XE%, 

while the pressure in the water region (where p = pO) is 
determined by solving the obstacle problem (2.13). Because 
the pressure is continuous in the entire fixed domain, (2.18) 
provides boundary values for (2.13) at the interfaces 
between the water and non-water regions. The solution of 
(2.13) can introduce yet another region ‘X,,, where p=pO 
and P= P,. The region CL@*, representing the incom- 
pressible water, is then the complement of the closure of 
&u&?u%u%0in52. 

In the idealized situation, where the interface boundaries 
between g* and the regions &, L@‘, +$, and ‘$, are piecewise 
smooth surfaces and the boundaries of Sz are sufficiently far 
from W, %, and G&, so that there are no fluxes across (and no 
work done at) the boundaries of Q, the change in energy 
over a time step is given by (2.16) with the boundary work 
term determined by 

s (u* .n)P= 
s 

(u* . n)( P - PC) 
a0* as- 

= -(P,-P,)2-(PA-PC)%, (2.19) 

where VA is the volume of A. n 0. In (2.19), the first equality 
follows from the fact that u* is divergence-free in g* and P, 
is a constant. The second equality follows from the con- 
tinuity of P and the fact that the interface boundaries, being 
free surfaces, propagate with speed u* . n in the direction 
of n. Thus, 

dVB s dV,i -=- dt aB 
u*.n and -=- 

dt s 
u*.n. 

dAndO* 

Formally taking the limit as r + 0 in (2.16) and using (2.17) 
and (2.19), we obtain 

dE 
z- 

- -1im @, 
T-t0 

(2.20a) 

where E, the total energy for the underwater bubble 
problem, is defined by 

E=e(p,n)+($i+Pc) vB-(PA-PC) VA. (2.20b) 

In classical problems, where there are no fluid collisions, the 
right-hand side of (2.20a) is zero; whereas, in nonclassical 
cases the limit may not even exist in the usual sense. 
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3. THE NUMERICAL ALGORITHM 

We consider an axisymmetric (r, z) coordinate system 
on which a tensor product grid with cell vertex points 
(ri,zj) with O=R,=r,cr,< . . . <rN=RR, and Z,= 
z,<z, < ... <z,=Z,, is defined. The cell Ci+,,2,j+,,2 
centered at (ri+ i,*, zi+ &, where ri+ 1,2 = (ri+ i + rJ2, and 
zj+ 1,2 = (z~+ I + zj)/2 has width Ari+ i,* = ri+ i - ri and 
height AZ,, 1,2 = zj+ 1 - zj. Let Sz denote the fixed domain 
(RL, RR) x (Z,, Z,). On the boundaries of 52, conditions 
are imposed to simulate the presence of a solid wall 
boundary Tw, or an infinite domain along a “cutoff” 
boundary r,. Also let r, denote the axis of symmetry r = 0, 
z,<z<z,. 

The subscript h is used to denote spatial finite dimen- 
sional approximations. A staggered (density, velocity)- 
pressure grid system is employed with density ph defined by 
its piecewise cell average values pi + i,*, j + ,,*. The velocity is 
represented by ut = u,, + II;, where II,, is the cell average 
and s II; = 0 on each cell. The “correction” II; is used only 
in the last stage of the algorithm. The weighted mass density 
m = rp is also defined at the cell centers, mi+ 1,2, j+ 1,2 E 
ri+ 1,2pi+ 1,2, j+ 1,2. The discrete pressure P, is a continuous 
piecewise bilinear function, with nodal values P, 
approximating the pressure at (ri, zj). 

Following Section 2, the numerical algorithm advances 
the computed density, p,,, and velocity, u,*, at a time t” to 
a time t” + i = t” + r” using the following steps: 

(1) Convection (cf. (2.2~(2.3)), 

(2) Redistribution of density and momenta (cf. (2.8), 
(2.11)), 

(3) Pressure correction (cf. (2.12), (2.13), and (2.19)), 

(Ph, @I + (Uhl)“) + (Pb, (u,*)“+‘) 
+p;:+‘,u;+‘+(u,l)“+‘). 

We remark that in the case of inviscid incompressible 
flow with no free surfaces and thus p = p,, everywhere, the 
algorithm of Section 2 reduces to the second-order projec- 
tion method of Bell et al. [17, 181. Formal second-order 
accuracy is retained in the numerical algorithm by coupling 
the pressure gradient terms into the convection step. 
However, since free surfaces are initialized in our applica- 
tions using discontinuous density and velocity fields, 
second-order accuracy cannot be expected in our numerical 
results. 

Convection 

For axisymmetric problems the unconstrained 
tion equations (2.2)-(2.3) have the form 

U,+F,+G,=R, 

where 

convec- 

(3.1) 

U=(;), F=uU=(%). 

G-VU=(~). R=( -;g). 

In the above, u and v denote the r and z components of u. 
These equations are discretized using a formally second- 
order Godunov-type method which uses slope limiting in 
space and explicit predictor-corrector time stepping. In par- 
ticular the present scheme closely follows the development 
by Davis [ 191. 

From the cell averaged values for the velocity uy+ 1,2, j+ r,* 
and weighted mass density ml+ 1,2, j+ 1,2 at time t”, slopes 
are computed in each coordinate direction using central 
differences with monotonicity constraints. For example, for 
the u velocity component, central, forward, and backward 
divided differences 

24: = ui + 312 - ui- l/2 
U{= 

ui + 312 - ui+ l/2 
, 

ri+3/2-ri-tf2 Art+ 112 ’ 

up= 
ui+1/2 - ui-1/2 

Ari+ 112 

are computed in the r direction. (Throughout this section, 
when there is no ambiguity, inactive indices are dropped for 
simplicity. For example, in the above, the j index and n 
superscript have been suppressed.) The central difference 
slope is limited using the formula 

l”r)i+ l/2 = 
1 

sgn(uf)min(lufl, 2 lufl, 2 IupI) if uJuF>O, 
o if ufub < 0. I r 

This prescription ensures discrete monotonicity in the sense 
that if ui+3/2>ui+1/2>uie11/2 then Ui+3/2>Ui+1/2+ 
(ur)i+ l/2 Ari+ 1,212 2 ui+ 112 2 ui+ l/2 - (ur)i+ 112 Ari+ 1,212 2 
ui- ,,2. Slopes are determined at the boundary cells using 
extrapolated values for the velocity or density. For example, 
across the axisymmetric centerline or a solid wall boundary 
the normal velocity is extrapolated as an odd function. In 
all other cases the velocities and density are extrapolated 
with the same value as in the adjacent interior cell (which 



effectively yields zero normal slopes). These monotonized 
slopes are used as difference approximations to the partial 
derivatives u:, II:, m:, and rnz at the cell centers. Further 
remarks on slope limiting can be found in [ 17,201. 
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where ep is a small positive number (in our computations we 
used sp = 10e8p,). 

Predicted velocity values 117:x j+ ,,2, and mass density 
values ml + ‘I* 1 + 1,2, j + ,,* at the half time step are computed using 
the first two terms in the Taylor series expansions in space 
and time. The time derivatives are expressed in terms of the 
spatial derivatives using (3.1) with the addition of the 
pressure gradient term indicated by (2.12). The spatial 
derivatives of u and m are approximated using the limited 
slopes. First the left, right, top, and bottom values 
(designated by superscripts L, R, T, B, respectively) within 
each cell are computed. For example, approximations to u 
at the right and left edges of cell Ci+ ,,*, j+ ,,* are 

From the predicted values, numerical fluxes across each 
cell edge are computed. These fluxes are chosen to model the 
locally one-dimensional flow of inelastically colliding fluid 
particles and are based on the signs of the normal velocity 
on each side of the edge. To illustrate, consider the vertical 
edge i, j + l/2 between cells Ci_ 1,2, j+ ,,* and Ci, 1,2, j+ 1,2. 
Along this edge, left and right edge average values for uh are 
computed using 

R ” + l/2 
ui,j+1,2=“i+l,2,j+l/2 

Ari+ 1~2 
- 2 (‘r)l+ l/2, j+ l/23 

(3.4) 
L n+ l/2 

‘i,j+ l/2 = ui- l/*,j+ l/2 
Ari ~ 112 

+- 2 (‘r)7- l/2, j+ l/2, 

“9 R 
ui+l,2,j+l,2=“1+1/2,j+l,2 

Ari+ t/2 
+- 2 (‘r)7+ l/2, j+ l/2 

and 

n.L 
ui+l,2,j+1,2=“I+l,2,j+1,2 

Ari + 112 
-2 (“*)1+l,2,j+l/2~ 

respectively. The remainder of the edge values are computed 
analogously. Using the notation FR = F(mR, u”) etc., the 
cell centered predicted values are 

i 

Ffj+ l/2 + Ffj+ l/2 

if ‘fj+l/* 

I;i,j+ t/2= FFj+ t/2 ’ 

> 0 and uTj+ 1,2 < 0, 

Fi+j+ l/2 

if 'tj+ l/2 > 0 and ufj + 1,2 > 0, 

if ‘fj+ l/2 < 0 and ufj+ 1,2 < 0, 
0 otherwise. 

(3.5) 

The numerical fluxes Gi+ 1,2, j for the horizontal cell edges 
are determined by first computing top and bottom edge 
values analogous to the way the left and right values were 
computed in (3.4), and then using expressions analogous to 

(3.2) 
(3.5) based on the signs of vi’, ,,*, j and I$+ 1l2, j. 

The momenta and mass density in each cell Ci+ ,,*, j+ 1,2 
are then corrected using 

where t = r” is the time step, and VP;:-“* is the approxima- 
tion to the pressure gradient computed in the previous cycle 
(see the section on the pressure correction step below). The 
density is extracted from the predicted mass density using 
the truncating expression 

! n+ l/2 
mi+ ll*,j+ l/2 

n-b l/2 
if mn+1/2 

Pi+l/*,j+l/*= ri+ 112 
r+l,2,j+1,2>0~ 

otherwise, 
(3.3a) 

which guarantees non-negative values. The predicted 
velocities are then determined from 

(mU)lZ,ll,: j+ 112 
uy+ 112 

r+ lJ*,j+ l/2 = 
?I+ l/2 

mi+ 1/2,j+ 112 
if PIZ$;j+1/2>Ep, 

0 otherwise, 

Redistribution of Density and Momenta 

To compute the density redistribution we consider (2.8) 
in an equivalent more standard form, namely, find H 2 0 
such that 

(3.3b) 

with similar expressions for the left and right values of m. 
The numerical flux across this edge is then given by 

U “n+l=unvZ 
[ 

Fi+t,j+ 1/2-Fi,j+ l/2 
Ari+ 112 

+ 
Gi+tl*,j+t-Gi+t/2,j_R,+1,2 

AZ,+ t/2 I3 
where R”+ ‘,* = (0, - g(Z + ’ + m”)/2,0)‘. Finally, the 
density pi + ,,*, j + r,* and velocities tii + 1,2, j+ ,,* are extracted 
from the corrected mass density and momenta using the 
procedure described in (3.3). 

-AH=P-p,, where H> 0, 
(3.6a) 

-AHaP-p,, where H= 0, 
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with boundary conditions 

H=O on r,, 
aH 
G’O on r,vr,. (3.6b) 

After solving (3.6) the density is redistributed using 

/S=p+AH. (3.7) 

The discretization of the Laplacian is derived from a 
piecewise linear finite element discretization in each coor- 
dinate direction with the nodes located at the cell centers. 
This yields 

(AH/z),+ t/2,j+ 112 

=- r”i+ t(arHh)i+ t,j+ I/Z - r”i(6rH/r),j+ l/2 

Fi+ l/2(lir)i+ l/2 

+ (‘zHh)i+ t/2,j+ t - (bH/z)i+ t/2,j 

tszJj+ l/2 1 (av,. 
r+l/Z,j+l/29 

(3.8a) 

where A,, denotes a matrix approximation to the Laplacian, 
and 

‘li = ri+ l/2 + li- l/2 

2 ’ 

ri+t,2= 
ri+3f2 +ri+1/2+ri-l,2 

3 9 

(Jrli+ 1,2 = ri+3/2 2 li- l/2, 

(~z~j+l,2~zj+312~zi-~I/2, 

(ia). I+ 1/2,j+ l/2 = ‘li+ 1,2(~rlir)i+ 1/2 tzz)j+ l/29 

(3.8b) 

(3.8~) 

(3.8d) 

(d,H,), j+ 1,2 = Hi+ l/2;; :;I - Hi- 1/%+ 112 
- ri- 172 

(3.8e) 

The discrete Laplacian A,, is scaled by the (diagonal matrix 
of) local volumes &so that the matrix A is symmetric. 

Dirichlet boundary conditions for H,, along r, are 
imposed by simply setting H,, = 0 in those cells adjacent 
to r,. Neumann conditions are imposed by setting the 
corresponding difference of Hh to zero in (3.8) and by 
appropriately extending the grid variable definitions. For 
example, across r, we set (6$,,), j+ 1,2 = 0, and r _ 1,2 = r,,, 
in order to define r”1,2 and (dr),,,. The resulting matrix A 

remains symmetric and semi-definite and is positive definite 
ifr,z/zr. 

Upon reordering the unknowns with a single index over 
all interior cells and cells adjacent to a Neumann boundary, 
the matrix A has a banded structure with five bands. By 
symmetry, only three bands need to be stored. The full 
discretization of (3.6a) is to find H,, 2 0 (HI 2 0 for each I) 
such that 

W-f,), = (PI- PO)@‘),, where H, > 0, 

(AH/J, 2 (PI - PO)@% where H, = 0. 
(3.9) 

This system is currently solved using a constrained 
conjugate gradient method with diagonal or incomplete 
Choleski preconditioning described in Appendix A. We 
remark that another successful iterative algorithm for (3.9) 
is the constrained successive over relaxation (SOR) method 
presented in [21]. However, numerical experiments have 
found the SOR procedure inferior to the method given in 
Appendix A, unless a nearly optimal relaxation parameter 
is used. For non-uniform grids this parameter can be 
determined only through numerical tests. Other possible 
approaches for solving (3.9) are discussed in [22-251. 

For the momentum redistribution, we first recast (2.11) 
into self-adjoint form. Let e = pti - PG and set 

ii= (e+PW 
1 

if p >O, 
ii if p =0, 

(3.10) 

IHe/ if 6 >O, q= ‘. 
1 0 if p = 0, 

if p > 0, 
(3.11) 

if 0 =O. 

The case when p = 0 in (3.10) is consistent in the sense that 
if 0 c p < p0 in some region, then it can be shown that p = d 
and H = VH = AH = 0 which implies, from (2.11), that 
ii = a. Furthermore, since H = 0 when 0 < p < p,,, q and 9 
also vanish in the limiting case in (3.11). Substitution of 
(3.10) and (3.11) into (2.11) yields 

-Aq+;=A9 if H>O, (3.12a) 

q=o if H=O, (3.12b) 

where (3.12b) follows from the definition (3.11), since if 
H = 0 then qp = 0; thus if p > 0 then q = 0; otherwise, q = 0 
by definition. Equations (3.12a) and (3.12b) are solved 
together with the boundary conditions 

q.n=Oanda(q-(q.n)n)=O 
an on r,d,. 

(3.12~) 
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Note that since H= 0 on Z,, q =0 on Z, follows 
from (3.12b). 

For the discretization of (3.12) we use the same discrete 
Laplacian for the interior nodes as described in (3.8). 
However, since qi + 1,2, j + 1,2 represents cell-averaged quan- 
tities, we do not impose zero normal values on cells adjacent 
to Z, or Zw. Instead, we add the unknowns q,,, j+ 1,2. n = 
(ql)O,j+1/2 located at the nodes (rO, zj+ ,,2) along Z,, and 
then impose (ql)o,i+ 1/2 - - 0 as the Dirichlet condition. Thus, 
the values (ql)lpj+ 112 are treated as interior unknowns. 
The corresponding terms in the discrete Laplacian matrix 
must be modified accordingly, and this modified Laplacian 
is denoted by ah. The analogous procedure is done along 
the wall boundaries Zw. The discrete function & is com- 
puted at each cell center using (3.11) with the condition 
p > 0 replaced by pi+ 1,2, j+ 1,2 > E, and p = 0 is replated by 
pi+ 1/2,j+ 1/2 G up (Cf. (3-3b))* 

The resulting pair of linear systems of equations is solved 
by a standard conjugate gradient method with diagonal 
preconditioning. We remark that particularly when H is 
small, these systems are very diagonally dominant, and the 
conjugate gradient method is very efficient. Furthermore, 
we iterate only over indices 1, where H, > sH (in practice we 
use E, = 10e6p,). 

From q,, the determination of e,, follows from a discrete 
version of (2.11), namely, 

eh = d”h(% + %)- (3.13) 

Finally we set 

if Ph>sp, 
(3.14) 

if Ph<sEp. 

Pressure Correction 

The final step of the algorithm is the determination of the 
pressure from (2.13), (2.18) and the correction of the 
velocity (2.12) in the liquid region. The resulting discrete 
pressure is Ph = Ph n+ ‘j2. The numerical method described 
here will be in the context of the underwater bubble problem 
discussed at the end of the previous section. Let 

w=52-(duau@)=Int(9), (3.15) 

where the notation 9 indicates the closure of the set Y. We 
approximate the solution to (2.13) by a continuous pressure 
P satisfying (2.18), with 

ap po- 
an=T”“‘” 

on (r,d,)fM, (3.16a) 

P=PA+(zs-z)Pog on r,fM, (3.16b) 

%1/106/2-9 

where z, is the location of the free surface at “sea level.” We 
can also consider the problem (2.13) as being solved in the 
region YV with Dirichlet conditions for P specified on the 
boundaries of SS’, W, and %. 

We first describe an algorithm for evolving the air, 
bubble, and cavitation regions from time t” to time t”+ ’ 
using the redistributed density Dh( =pt’ ‘) obtained in the 
previous step. Again reordering indices with a single index 
over all cells, let 

denote the set of indices of the non-liquid cells, where eW is 
a small positive number (in our computations, E w = 0.02). 
Let 

&4;= u c, and izq= u c, 
IEP, IE Ps 

denote the discrete air and bubble regions from the previous 
step. Index sets la and Is for these regions at the new time 
step are initialized as 

1’0’ = 1” (-J x 
A A and Z(O) = Zi n X. B 

These sets are then iterated using 

(3.17a) 

until Z?’ = I$-‘) - IA and Zg) = I;-‘) = Is. Each pass of 
(3.17a) turns all non-liquid cells, which are adjacent to the 
air region, into air cells. Thus, bubble or cavitation cells can 
“vent” into the air. All non-liquid cells, which have not been 
marked as air cells and are adjacent to a bubble cell, become 
bubble cells by (3.17b). Thus, cavitation cells can be merged 
into the bubble. Finally, the remainder of non-liquid cells 
which are neither air nor bubble are defined to be cavitation 
cells; that is, 

The new non-liquid regions are given by 

dh= u Cl, gh= u Cl, Wh= u C,. (3.18) 
IsI* lela IEIC 

We remark that the above algorithm can be extended to 
include the cases when air entrapped bubbles are formed 
(dh becomes disjoint), or independent multiple bubbles are 
formed (ah becomes disjoint). A detailed description of 
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the logic required for treating multiple bubbles and an 
application featuring these events were presented in [26]. 

Analogous to (3.15) the discretization of w is given by 

We refer to the Dirichlet boundary of vh as the boundary of 
wh common to &, Lgh, %,,, or Z,. The discrete bubble 
volume needed to determine P, from (2.17) is given by 

The following spaces are used for our finite element 
discretization of (2.13), (2.18), and (3.16): 

Yh = { #h:4h is continuous in 52 and bilinear on each cell 
CEQ}, 

@h = {dhe $$: 4h 20 in 9, q$,, =0 along all Dirichlet 
boundaries of wh, and dh = 0 in each cell C $ Y&}, 

%X = { uh = (ur , u2) : II,, is piecewise constant on each cell 
in Sz}, 

%=I h-t u - ui, u2) :on each cell C E 52, u1 is linear in z 
and constant in r, u2 is linear in r and constant in z, and 
h=o>. 

Our finite element formulation of (2.13), (2.18), (3.16) is: 
find $,, E @h such that 

(VICII.V~h)~~(Uh+(Uhi)~,V~h)-(vQh,v~h) (3.19) 

is satisfied for each b,, E +h, where Q,, E Yh satisfies (2.18) 
and (3.16b) with d, g’, and % replaced by J&, a,,, and %?,,, 
respectively, and Qh = P, in wh. In (3.19) the inner product 
( ., .) denotes integration over Sz (or, equivalently, over Y&h, 
since d,, has support in wh). Once tih is determined from 
(3.19), the discrete pressure P,, E Yh, approximating the 
solution to (2.13), (2.18), (3.16), is given by 

P,=vQh+Qh. (3.20) 

Givenu,E%‘:,-%E@@i, the discrete divergence of uh is 
defined at the vertex point (ri, zj) E x,, using the “weak” 
formula 

(V/l *uiJ/= -(u/n w ((g, 1) ’ (3.21) 

where 4; E vh satisfies &,(x,) = 1, and 4; = 0 at all other 
vertex points. Noting that VP;+ ‘I* = VP,, = (VP,)’ + 

(VP,)l ~a!:, and has support in -W,, it follows from 
(3.19)-(3.21) that the “corrected velocity” 

Uh*=~h+(u~)“-~VP;+l~*=u~+~+(U:).+~ (3.22) 

satisfies the discrete analogue of (2.10) in wh. 
Note that if we neglect the term (VP,)’ and simply 

correct the velocity ii,, E %!z using 

uh* = iih -; (VPJO, (3.23) 

then II: cannot be ensured to satisfy (2.10) in the discrete 
sense. As a consequence, even if the velocity and density 
remain unchanged during the other steps of the algorithm, 
the pressure and, hence, the velocity will not remain 
unchanged after successive pressure correction steps using 
(3.19), (3.20), and (3.23). In other words, when 
P, = P,= P, and the inequality in (3.19) is satisfied with 
equality, (3.23) does not yield the projection of %X onto 
its discretely divergence-free subspace. Numerically, this 
procedure can generate spurious pressure oscillations, 
particularly near the discrete bubble region. However, 
(3.19) (with equality), together with (3.2Ok(3.22), defines 
a projection from @,?, onto its discretely divergence-free 
subspace when P, = P, = P, and eliminates the spurious 
oscillations. 

For computational simplicity, a matrix system of equa- 
tions for values of Ph at all vertex points (except along 
Dirichlet boundaries) of 52 is considered. All equations 
corresponding to basis functions I$:,, where 1 E IA v Is v I, 
are replaced by the equation P, = P,, P,, or P,, or 
equivalently, til = 0. The resulting matrix is symmetric and 
positive definite and has banded structure with nine bands 
(of which only live need to be stored by symmetry). In the 
current implementation we approximate the constrained 
problem by the unconstrained linear system in which the 
constraint d,, 3 0 is removed from the definition of & and 
the inequality in (3.19) is replaced by equality. Wherever the 
resulting P falls below P, it is set equal to P,. This 
approximation is motivated by the fact that pressures below 
P, rarely appeared in our computations for the examples 
presented in Section 4 and it is computationally more 
efficient to solve the unconstrained problem. The 
unconstrained linear system is solved using a conjugate 
gradient method with incomplete Choleski preconditioning 
with zero Ii11 (see, e.g., [27]). 

During the next cycle, n c n + 1, the approximation to 
VP used in the predictor (3.2) of the convection step is taken 
to be 

(p; - l/2, p: - l/2) = (VP; + l/2)0* 
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The term (VP;+1/2)1 is not needed because 
f (vP;+l’y = 0 on each cell and only first-order accuracy 
is required in the predictor (see, e.g., [ 193). 

Time Step Selection 

The stability requirement for the time step r” is dictated 
by the Courant-Friedrichs-Lewy condition associated with 
the explicit convection step. This requirement is 

Zn IlU;:Ilh<~<l, (3.24) 

where 

(3.25) 

In addition to (3.24) we also impose the condition that 

WY2 po II(VP;-1’2)o~~h~k 1. (3.26) 

This additional restriction is imposed due to the inclusion of 
the pressure term in the convection step (3.2). Condition 
(3.26) restricts the time step primarily for bubble problems 
when the bubble radius is near an extremum, because in 
those cases the velocity is nearly zero. 

Numerical errors due to time discretization are controlled 
using an adaptive time step selection based on the computed 
rate of energy loss. For classical flows the energy (2.20b) 
satisfies 

(3.27) 

Therefore, 

is an estimate of the local truncation error for Eq. (3.27). 
Given a bound 6 on the local truncation error, the time step 
r” is taken to be 

if T” < 0, I T”I > 6, 

if T” < 0, (T”I < 0.96, 
r” 

n--l= (3.28) 
7 if T”>O, IT”1 ai, 

I 0.96 
2T” 

if T”>O, IT”1 -c?, 

subject to $“- ’ < r” < 2~“~i and rn > Z,in, where Z,in is a 
chosen lower bound on the time step. In the above, the value 
0.9 is used as a “safety factor.” 

In the first case in (3.28) the energy is decreasing and the 
bound on the truncation error has been violated. Here 
the time step is decreased under the assumption that 
T”+‘(T) = O(T~‘~), reflecting a possible singularity in the 
solution of (3.27) due to liquid collisions. For example, for 
a one-dimensional collision of liquids at time t,, the right- 
hand side of Eq. (3.27) should be replaced by a constant 
times d(t - t,), where 6(x) is the Dirac delta function, and 
thus E is discontinuous. When the truncation error is under 
the tolerance and the energy is decreasing as in the second 
case in (3.28), the time step is increased under the assump- 
tion that T”+‘(T) = O(r). In the third and fourth cases the 
energy is increasing. As indicated in Section 2, this theoreti- 
cally should not occur. The local truncation error tolerance 
is therefore reduced by a factor of two. A non-increasing 
energy is not ensured by our numerical algorithm (in 
particular the convection step) and computations have 
shown that some increases can occur, albeit rarely. 

4. COMPUTATIONAL RESULTS 

The first problem we consider is the face-on collision of 
two cylindrical masses of liquid in the absence of gravity. In 
Fig. 1 computed density and pressure contours are dis- 
played at various times for such a problem. Initially both 
cylinders have radius R = 1, the upper cylinder has height 
2, = 1 and is moving downward with velocity ul = -k, and 
the lower cylinder has height 2, = 2 and is moving upward 
with velocity u2 =0.5k. Under the assumptions that the 
liquid is incompressible, the collision is inelastic, and 
momentum is conserved, the exact energy loss at the 
moment of impact can be calculated analytically. Thus, 
this problem represents an important benchmark for our 
algorithm. 

In general, let there be two regions in which p = po, 
denoted by gl and Q2, which collide at some instant t = to. 
At this instant, Bl n B2 = T# 0, and an impulse -VI is 
transmitted to the liquid, such that 

lim u(x, t) = lim u(x, t) -i VI 
f 1 to f t 10 

is divergence-free in Q1 u Q2. Therefore, I 
equation 

AZ= -po(u,-u2).nd,, 

satisfies the 

(4.la) 

otherwise, 
where ar is a Dirac measure on r and the unit normal n 
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t= 0.307945 

I 

t= 1.120923 
I I 

t= 0.612590 

t= 1.424107 

E 

I , 

t= 0.616045 

t= 1.600451 

FIG. 1. Computed density and pressure contours for the evolution of two colliding cylinders of liquid. The computational grid was composed of 128 
by 128 cells with Ar = AZ = ft. The outline of the liquid region is displayed by contours of density in the range 0.9~~ < p Q 0.96p,. 

points from region 9i into region &. Boundary conditions 
for (4.la) are 

z=o on &?, (4.lb) 

where 9 is the closure of 9?r u 9?. The energy lost in the 
collision is given by 

~~~(vz)2dx=~S,z(“1-“2).“dS. (4.2) 

For the case in which the colliding cylinders have radii 
R, = Rz = R and heights Z1 and Zz, (4.1) can be solved 
using a separation of variables technique. In Appendix B it 
is shown that the energy loss expressed as a fraction of the 
kinetic energy of motion relative to the center of mass is 

&WI +Z2) 

z1 z2 

(4.3) 
Here p,, is the nth positive root of the Bessel function J,. 

For the initial configuration used in Fig. 1, the corre- 
sponding energy loss fraction is 9 = 24.087 %. The com- 
puted energies, Eh(t), on successively refined grids, where 
h = Ar = AZ = d, $, &, 8, are displayed in Fig. 2, together 
with the exact energy E,(t). (These values are scaled so that 

EJO) = 1.) The time steps used in these calculations were 
determined using Iz = 0.4 in (3.24) and (3.26), and the adap- 
tive strategy described in (3.28) with 6 = 3.2h, Z,in = O.O32h, 
and z,,, = 1000~,~,. Table I lists the Li norm energy errors 

b(h)= IlEo-&II =j’ l&(t)-E,(t)1 dt, 
0 

- Cylinder Collision Energies - 

1.0 

s 
9 ^ ^ \ 
5 

u.ti 

w” 

0.6 

0.4 
0.0 0.2 0.4 0.6 0.8 1.0 

time 

FIG. 2. Comparison of the computed time histories of the energy for 
the problem of Fig. 1 on various grids to the exact energy after the collision. 
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TABLE I 

Errors and Rates of Convergence for Computations of 
the Collision of Two Cylinders of Water (cf. Figs. 1, 2) 

h 8th) c&W h) 

a 0.187613 
t 0.098873 0.924 

A 0.052656 0.909 
B 0.021815 1.271 

together with the rates of convergence 

The average rate of convergence for this problem is 
a,(:, A) = 1.035, indicating that b(h) x O(h), which is 
optimal in the sense that it matches the rate of convergence 
in the square of the energy norm (4.2) for a finite element 
approximation to I satisfying (4.1) using bilinear elements. 

Our next benchmark problem is the motion of a spheri- 
cally symmetric adiabatic bubble in an infinite liquid region 
without the effects of gravity. Initially, the bubble is taken at 
its minimum radius R(0) = Rmin and the liquid region is 
assumed to be at rest, so that (dR/dt)(O) = 0. The subse- 
quent motion of such a bubble is governed by the equation 
(cf. Cl311 

R$+;($r=i(Pm(0)(+)li-Pm), (4.4) 

where R = R(t) is the bubble radius at time t and P, is 
the pressure at infinity. The initial bubble pressure is 
determined from an integration of (4.4) which yields 

PB(0)= P,(l --y)(l -a3)/(1 -a3(‘-Y)), 

where a is the ratio of maximum to minimum bubble radii, 
a = R,,, fRmi,. For this study we selected y = 1.3, Rmin = 1, 
R max = 10, P, = 10, and p,=O.O31081. The numerical 
integration of (4.4) with the above values yields the “exact” 
(numerically converged to a tolerance of 10e6) period 
T= 1.0684. 

TABLE II 

Computational Results for the Spherically 
Symmetric Bubble Problem 

h L ~a,* R h,max a&h, h) Th a&h, h) 

1.0 106 2.04e-3 9.339 0.9748 
0.5 201 l.l4e-3 9.643 0.888 1.0170 0.865 
0.25 401 5&e-4 9.814 0.941 1.0415 0.934 

The computational grids used to study this problem con- 
sisted of a region of uniform cells, Ar = AZ = h, in the region 
r < 12, Iz - z, 1 G 12, where z, is the z location of the center 
of the bubble. Outside this region the cells are stretched in 
the r direction using Ari+ i,z x 2h Arip 1,2 under the restric- 
tion that Ar. , + 1,2 < 40h, with identical stretching in the z 
direction on the top and bottom of the uniform grid region. 
The boundary condition P= P, is imposed along 
r=R,=L,andlz-z,I=L(i.e.,z,-Z,=Z,-z,=L).In 
order to demonstrate convergence of the method the value 
L was increased and the average time step raVg decreased as 
h -+ 0. The adaptive time step strategy with parameters 
T max = lOOZ,i, = 0.04/z, and tolerances 6 = 0.2,O. 15, and 0.10 
for h = 1.0, 0.5, and 0.25, respectively, were selected so that 
T avg was decreased at approximately the same rate as h. 

Table II summarizes the results of these calculations. The 
computed convergence rates age and a, for the error in 
the maximum radius, JR,,, - Rh,max (, and the error in the 
period, I T - Th 1, are indicative of first-order convergence, 
which is the best that can be expected since discontinuities 
in the density across free surfaces are “captured” by our 
algorithm. 

The final example considered is the evolution of an under- 
water bubble in the absence of gravity, located in the 
vicinity of a solid wall at the bottom of the domain. With the 
exception of a solid wall boundary located at Z, = z, - 10, 
the initial conditions and grids used in the computations 
are the same as for the spherical bubble approximation 
described above. 

The computed bubble evolution is displayed in Fig. 3 
using the line (h = 0.25) grid. The bubble retains a nearly 
spherical shape as it expands to a maximum volume at time 
t = 0.61. At the maximum, the radius of a sphere with the 
same volume is 9.81. During the contraction a high pressure 
region forms above the bubble (t = 1.12), causing the forma- 
tion of a water jet which impacts the solid wall (t = 1.21) 
after which the bubble changes topology and forms a torus. 
In fact, shortly after the bubble attains its minimum volume 
at t = 1.25, it splits into two distinct torroidal bubbles 
between t = 1.26 and t = 1.30, and they recombine at 

TABLE III 

Summary of Computational Results for a Bubble 
in the Proximity of a Wall 

h R h,max Th T h,l (I h, mm 

1.0 9.367 1.155 1.149 5.959 
0.5 9.651 1.218 1.192 6.859 
0.25 9.810 1.252 1.211 7.530 

1 1 1 1 1 
0.0 9.97 1.29 1.23 8.20 

Note. The arrows indicate first-order extrapolation from the h = 0.5 
and h = 0.25 computed values. 
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t x 1.40. The computed pressure contours and bubble 
shapes agree qualitatively with the results of Blake, Taib, 
and Doherty [6], using a boundary integral method, with 
the assumption that the bubble is a cavitation bubble with 
constant vapor pressure. However, they were unable 
to carry their computations past the time of “jet 

breakthrough,” an event which has no special consequences 
for our algorithm. 

Table III lists some quantitative results for solutions of 
this problem on the three computational grids. In this table 
the bubble “period” T,, is the time that the minimum bubble 
volume is attained, T,,, is the time that the water jet impacts 

t= 0.100056 t= 0.201007 

t= 0.610502 t= 0.616517 

t= 1.210694 

t= 1.160395 

t= 1.261194 

t= 1.196695 
I 

t= 1.40102rl t= 1.602503 

t= 0.40679 1 

t= 1.261394 

FIG. 3. Computed pressure and density contours for the evolution of a bubble near a solid bottom wall with gravity forces neglected. 
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the wall, and Uh,max is the scaled maximum water jet speed 
( uh,rnax = max, Iu$l ((P, - P,)/p0)-‘/2). The “jet speed,” 
u&, is the velocity of the water cell along the axis and adja- 
cent to the bubble, and P, is the “vapor” pressure (which we 
have taken to be the bubble pressure at its maximum 
volume). Values for the bottom row of this table were 
obtained by extrapolating the corresponding h = 0.5 and 
h = 0.25 grid results assuming a first-order rate of con- 
vergence. Comparing these values with Table II, it can be 
inferred that although the maximum bubble radius is not 
significantly affected by the wall, the bubble period is 
increased by approximately 21%. Furthermore, the jet 
impacts the wall a time 0.0465T before the minimum 
volume is attained. The values listed in the final column 
indicate a rate of convergence of only 0.43 for Uh,max. Since 
this maximum speed is attained before the jet impacts the 
wall, we expect that this rate is not due to a temporal 
singularity in the solution, but rather to an under-resolution 
of the jet on the coarsest grid. Thus, the true asymptotic rate 
will not be attained until the jet is sufficiently resolved. 
However, the extrapolated value of U,,, = 8.2 can be com- 
pared to a value of 8.6 reported in [6] using the constant 
vapor pressure model mentioned above, and a value of 7.6 
determined experimentally in [28] for spark induced 
bubbles generated in free fall. 

Figure 4 shows a comparison of the computed energies 
for the h = 0.25 bubble computations with and without the 
wall boundary. In the case when no wall is present the 
energy losses are due entirely to numerical dissipation. 
Figure 4 shows this dissipation to be greatest when 
Rayleigh-Taylor instability can be expected. Rayleigh- 

0.8 

0.5 1.0 1.5 
time 

FIG. 4. Computed energies for the bubble problems with and without 
a solid wall boundary. The regions with slanted lines indicate potential 
Rayleigh-Taylor instability. The lines which slant upwards from left to 
right correspond to the problem with no walls, and the downward slanting 
lines correspond to the problem with the solid bottom wall. 

Taylor instability can occur when P, > P, which comprises 
only 8.6% of the total time of the computation (from t = 0 
to t = 1.6). During this time 63 % of the energy loss 
occurred, despite the fact that the minimum time step was 
being selected by the adaptive time stepping strategy. When 
the wall is present energy losses are expected both from 
numerical dissipation and from the water jet impacting the 
solid wall and subsequent formation of the annular bubble 
(cf. Fig. 3). This is confirmed by our calculations. The 
energy loss for the problem in which no wall is present is 
approximately 14%, while the total energy loss with the 
wall boundary is 28 %. Thus there is a loss of about 14 % 
due to the jet impingment in this problem. 

5. CONCLUDING REMARKS 

In this paper a numerical algorithm for incompressible 
free surface problems has been presented. This algorithm 
provides a rational treatment of liquid on liquid or liquid on 
solid collisions based on the assumption that these colli- 
sions are inelastic. These collisions have an associated 
energy loss which can be attributed to turbulence. The 
algorithm also provides a robust method for treating 
problems where the free surfaces evolve into highly complex 
geometrical shapes. 

The numerical examples were chosen primarily to 
demonstrate the applicability of the algorithm and its 
convergence properties. Numerical results of an inelastic 
collision of two liquid cylinders yielded energy losses which 
were converging at an optimal rate (with respect to uniform 
grid refinement) to the analytically determined value. For 
the problem involving the formation of a water jet and its 
subsequent impact against a solid wall, computed pressure 
contours and water jet shape agree well with the boundary 
integral method solutions found in [6]. The impact of the 
jet against the solid wall and the topological changes in the 
shape of the bubble(s) are events which cause a breakdown 
of classical boundary integral methods. That these events 
are of no special consequence in our formulation attests to 
the generality of our approach. 

We remark that in the treatment of many free surface 
problems without surface tension, mathematical complica- 
tions can arise. For example, in underwater bubble 
problems we can expect to have VP. n > 0 on the bubble- 
water interface for portions of the motion. This is the case 
of Rayleigh-Taylor instability; see, e.g., [29]. Some 
preliminary theoretical considerations indicate that, if the 
bubble-water interface is considered in the limit in which 
the surface tension vanishes, then the interface will achieve 
a three-dimensional measure (in the sense of capacity 
dimension as opposed to Hausdorff dimension) which will 
be of the order of the distance through which the water has 
been accelerated in the unstable regime. Such indications 
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are not inconsistent with the observed phenomenon of 
entrainment at bubble-water interfaces. 

Thus, we are in the position of obtaining a numerical 
solution to a physical problem which is not adequately 
understood theoretically. We may give credence to our 
computations on the following counts: 

(1) In underwater bubble problems of interest, the 
portion of the fluid motion during which Rayleigh-Taylor 
instability prevails is usually a relatively small part, and 
hence its influence on the overall bubble evolution may not 
be substantial. During most of the expansion phase of the 
bubble, it is actually accelerating inward (stability) even 
while it is moving outward. 

(2) Our generalized formulation of hydrodynamics may 
be robust enough to treat problems in which the free 
surfaces have a non-zero higher-dimensional measure. 

(3) Benchmark numerical problems have demonstrated 
first-order convergence to the gross quantities of maximum 
bubble volume and bubble period. 

The present paper neglects the effects of surface tension 
and viscosity. For the sake of efficiency, we also have not 
exploited the ability to predict the formation of cavitation 
regions by circumventing the obstacle problem which 
imposes a lower bound on the pressure. The issues will be 
addressed in future work. 

APPENDIX A: NUMERICAL METHOD FOR (3.9) 

Consider (3.9) in the form of the linear complementarity 
problem: find X> 0 such that 

AX2 F, (AX-F).X=O, (A-1) 

where A is an n x n symmetric positive definite matrix, X 
and Fare n-vectors, and inequalities between vectors are to 
be interpreted component-wise. The algorithm we employed 
for (A.l) is a conjugate gradient (CG) type method which 
attempts, in a heuristic fashion, to employ incomplete 
Choleski preconditioned (ICP) iterations as frequently as 
possible. Otherwise, diagonal preconditioned (DP) itera- 
tions are used. The most recent solution of (3.9) is used as 
the starting value for X. This method is motivated by the 
modified Polyak method formulated by O’Leary in [25]. In 
our procedure, the set I” of indices at which Xis not bound 
by the constraint is allowed to increase without restarting 
with a steepest descent (SD) iteration (v is the iteration 
number). For an SD iteration multiple indices may be 
removed from I’. When I” appears to have become con- 
stant, ICPCG iterations are used on I” without checking the 
constraint until convergence of the linear system restricted 
to I” is obtained; then the constraint and convergence 
criterion for (A.l) are verified. Specifically, the method 

consists of the following steps. Unless otherwise noted, the 
index k always runs from 1 to n, also N” denotes the number 
of elements in I’, N, denotes the number of consecutive 
times NV has equalled NV-‘, E is the input error tolerance, 
and the flag c is set to be - 1 for SD iterations and 1 for CG 
iterations. If N, = N: (an input value that was set to be 5) 
an SD iteration is performed. If N, > Nc (an input constant 
that was set to 5) ICPCG iterations, with I” held fixed, are 
executed until convergence of the linear system restricted to 
I” is obtained or until N, = fl= (an input value defined to be 
40). The set I” is then updated and a convergence test is 
done, as detailed below. (It has since been observed that for 
the application herein it is more efficient to: choose N,* = 1, 
iV, = 1, and to do an ICPSD step in (2a), instead of a DPSD 
step when N, = NT .) 

(i) (Initialization) Set v=O and No= -1, and set 
Xv = the converged vector from the previous time (A. 1) was 
solved (set Xv = 0 the first time (A.l) is solved). Set [ to be 
- 1, set R = F- AX”, and calculate C such that A4 = CC’ is 
the incomplete Choleski factorization of A (cf. page 376 of 
[27]). This factorization is performed as if A in (3.9) 
resulted from a nine point difference stencil. 

(ii) Find I’ = {k:XE> 0 or Rk >O}, then calculate 
r,,, = max,l 1 R, I/(&),, if rm < E then stop ((&), is given by 
(3.8d)). 

(1) (Begin the next iteration) Increase v by 1, 
calculate NV (I” has already been obtained), if NV = NV- ’ 
then increase N, by 1, otherwise set N, = 0. If N, = N,* then 
set[=-l,elseifN,>N,thensetc=l. 

(2a) (Find the next search direction P”) If [ < 0 then 
use the DP steepest descent direction: set P;j = RJA,, for 
k E I” and PL = 0 for k 4 I”, and proceed with step (3). 

(2b) If [ > 0 then try the ICPCG direction: set Z = 0 
and then solve CC’Z = R over the indices in I” (equivalent 
to Method 2 on page 381 of [25]). Next set 
/I1 = - Z . AP” - ’ (previously have calculated AP” - ’ and 
j32=P”-1~APv-1).Thenset/3=j?,/j?,andPv=Z+/?Pv-’ 
(the ICPCG direction). If N, >&r= perform step (3). 
Otherwise; if, for some index k in I”, XL- ’ = 0 and PL 6 0, 
then perform step (2~) (cf. p. 377 of [25]), else proceed with 
step (3). 

(2~) Use the DPCG direction (c > 0 but the ICPCG 
direction is unacceptable). Set Zk = Rk/AkR for k E I” and 
Zk=O for k$Z”, /II= -Z.AP”-‘, /?=B1//Iz, and 
P”=Z+BP”-? 

(3) (Find step length in P” direction) Calculate AP”, 
/Iz = P” . AP”, ct2 = R. P”, a = uJ&. If N, 2 NC proceed with 
step (5). 

(4a) If [ > 0 then enforce the constraint X> 0 using u: 
set X”=X’-‘+aP”. For each k; if X:=$0 and XL-‘>0 
thenset[=-landseta=min(-XX;-‘/P;,a). 
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(4b) Else if 5 < 0 then enforce the constraint using P: 
set X’=X’-l+aP’, and [=l. For each k; if XL<0 and 
XL-‘>Othensetc=-landP;=-XL-‘/a.Next,if[<O 
then recalculate a for the adjusted direction P’; i.e., compute 
AP’, p2 = P’ . AP’, a2 = R . P’, and set CL = min(u, u1/B2). 

(5) Calculate x’ = x’- ’ + aP’. 

(6a) (Calculate the error r,,, after updating 
appropriate quantities) If N, = flc then set 5 = - 1, N, = 0, 
xY=max(X”,O), R=F-AX’, I’+l= {k:X;>O or 
Rk > 0}, and rm = maxIy+l IR, I/(&),. 

(6b) Else if N, 3 & then: set R = F-AX’, I”+’ = I’, 
and r,=maxIY+I IR,I/(dV),; if r,<c then set c= -1, 
Nc=O,X’=max(X’,O),R=F-AX’,Z’+‘=(k:X;>Oor 
R,>O}, and r,=maxlY+I IRkI/(&)k. 

(6~) Else set R=F-AX’, Z’+‘={k:X;>O or 
R,>O}, and r,=max,+l IRkI/(&)k. 

(7) (Convergence test) If rm GE stop. If v is larger 
than some fixed bound, print out a message and stop, else 
proceed with step (1) to start the next iteration. 

In our hydrodynamic computations E was chosen to be 
10-3p,r, where t is the current time step. If convergence is 
obtained, then the resulting p given by the discrete version 
of (3.7) does not exceed PO + E. The natural double indexing 
of the rectangular region was used in place of the single 
index k, making it easy to take advantage of the particular 
(sparse) form of A. If m, and fi, are set to infinity and step 
(2b) is deleted, it can be shown, using methods similar to 
those in [25,30], that X” will converge to the solution of 
(A.l). In particular, the recalculation of a in step (4b) gives 
a positive lower bound on the decrease in the energy 
iX+ AX-F. X for DP steepest descent steps if a sub- 
sequence of X’ were to converge to some 8 not the solution 
of (Al). 

APPENDIX B: DERIVATION OF (4.3) 

For the face-on collision of two coaxial liquid cylinders 
with equal radii R, consider a cylindrical coordinate system 
with the axis aligned with that of the liquid cylinders and 
such that z= 0 contains the impact surface r. On P, 
(u, - u2) -n = ul + u2, where ui=Iuil (i=1,2) are con- 
stants. Setting 

I@, z) = PONY, + u2) $(r, z) 

in (4.1), we find that $(r, z) satisfies 

in D = (0, R) x (-Z,, Z,), (B.la) 

with 

9(r,Z1)=9(r, -Z,)=O for O<r<R, 

9(R, z) = 0 for -Z,<zdZ,. 
(B.lb) 

In the above, 6(z) is the standard Dirac measure on z = 0. 
The energy loss in the collision given by (4.2) can be 

written as 

dE= nRp,(u, + ~4~)~ JR rY(r, 0) dr. 
0 

Before impact the velocity of the center of mass is 
C(Z2 u2 - Z1 ul)/(Z, + Z,)] k and the kinetic energy of the 
motion relative to the center of mass is given by 

Em = 
nR2p,h + ~2)~ Z, 22 

2(Zl +Z2) . 

Hence, 

We seek a continuous solution to (B. 1) of the form 

9(r, z) = 
{ 

Y”‘(r, z) for (r, z) E D, = [0, R] x (0, Z,] 
#“(r,z) for (r,z)ED2= [O, R]x [-Z,,O), 

(B.3a) 

where Yci) are solutions of L(X(‘)) = 0 satisfying conditions 
corresponding to (B.lb) on aD, n aD and 

l&i,:: [N’)(r, -8) - 4(‘)(r, E)] = 0 for O<rdR, 

F,:: [Yy)(r, -E) - Yp)(r, E)] = f for O<r<R. 

(B.3b) 

Using a standard separation of variables assumption in 
each subdomain Di, we seek solutions of the form 
#‘)(r, z) = 9(r) b(z), where &? and 9 satisfy 

r92” + 92’ + hi% = 0, ET”--h?iY=o, 

respectively, and 1 is constant. Assuming that gci) (and 
hence 9) is finite at r = 0 and vanishes at r = R, we conclude 
that W(r)=KJ&,r/R) and A= (P,JR)~, where K is a 
constant, J, is the Bessel function of order zero, and p,, is 
the nth positive root of Jo(r) = 0. Imposing Scl)(r, Z,) = 
Sc2)(r, -Z,)=Oandth e irs condition in (B.3b), we obtain f t 
the formal expressions 

.Yci)(r, z) = f C, 
sinh[pJZi + (- l)i z)/R] 

JdwIR) 
n=l sinh(p,Z,/R) 

(B.4a) 
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in Di for i = 1,2, where the constants C,, n = 1, 2, . . . . are 
determined by the second condition in (B.3b). Using the 
convergent expansion (see, e.g., [ 3 1 ] ) 

f =f f tc,J&,,r/R) for 0 <r < R, 
II=1 

where K,, = /3;‘st qJ,,&q) dq and B,, = [J&43*/2 (note 
IC, = 2/(~~ Jl(p,)), cf. [32]); we find from the term-by-term 
differentiation of (B.4a) that 

C, =” [coth(pnZ,/R) + coth(pnZ2/R)]-‘. (B.4b) 
n 

To justify this formal construction, we note that p, - O(n) 
and Ire,) - O(n-‘I*) as n + co. Thus the series given in (B.4) 
is absolutely and uniformly convergent on di and Yci) is 
continuous on di. Furthermore, since each term in the 
series is harmonic in the interior of Di, it follows by 
Harnack’s theorem that Yci) is also harmonic in the interior 
of Di. 

We have from (B.3) and the continuity of gci) on 4, that 

WY 0) = f G JdwIW 
n=l 

and 

(B-5 1 

Since &rcf/3, = 2, (B.2), (B.4b), and (B.5) imply (4.3). 
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